
Group 1 Final Project

Frankel Zhao, Young, Kevin Zhen, Jack Zhang

March 1, 2024

Course PACSSR-301005: Computer Graphics

1 Introduction

The divine Chinese dragon guarding the Sun in the universe is what we
expected for the project’s final work, and the rendering indeed reached a similar
effect. After the main theme is settled down, the work is divided into modeling
different parts, finding texture, and implementing animation for each group
member. The rendering quality turns out to be better than we expected as we
continue to explore OPENJSCAD, THREE.JS, and shaders.

2 Approach

2.1 Model

The dragon model is divided into four parts: head, body section, feet, and
tail.

The dragon head contains many rounded cube, sphere, cube, and cylinder.
Cutting, moving, rotating, piecing is applied to different extent. Because of the
mostly irregular shape of dragon head, no formula is involved in head model.
The fundamention of the head is the brain, two long mouth and horn. Horn is
implemented by cylinders and sphere, and take mirrored to get another. Brain
and mouth are basically achieved by cube and rounded cube, some cutting is
applied on them. After accomplishing the basic shapes, detail, hair, is also
added to the model. Hair use cylinder and solution parameter is set to 3 to
be the triangular prism, adjusting each of prism to cover the brain, the head is
finished.

The body model is created for only a section of an entire body because the
following animation step requires a string of body sections to move along a
stereo curve. Each body section consists of the union of two spiral pillars to
mimic the dragon’s scales and a line of sharp protrusions for the dragon’s dorsal
fins.

The center of the dragon’s foot is a sphere, the body of the four claws and the
”legs” extending to the body are composed of two or three composite cylinders,
the joints between the bodies are the sphere, and the nails of the dragon’s claws
are six cones. The six pyramid is obtained from the deformation of the sphere
with the surface number parameter set to 3. The composite cylinder of the paw
body is composed of a relatively thin cylinder and a thicker cylinder with a
distance set outside the cylinder at a certain distance, which can form a visual
effect similar to the dragon scale

1

For the tail, it is the combination of six curved tail bones plus the spiral
extension from the body. A function was written for the tailbone growth where
a tailbone part model could be built by specifying the start point, height, and
direction. With this function, A tailbone part could continue to grow at the end
of the previous tailbone part to form one curved tailbone. After adjusting the
position, length, and direction of each bone part into six tailbones, combining
them with the body results in the final appearance of the dragon tail.

2.2 Texture

After modeling the Chinese dragon’s head, body, claw, and tail, the texture
would be applied to them. The model would be purely black if only the .stl
file were loaded, and for more photo-realistic scenes being animated, each part
of our Chinese dragon would have a different texture to be applied. Since the
.stl file generated by OpenJSCAD does not map the vertex and textures’ uv
coordinate, the difference between pixel and pixel cannot show well, texture is
implemented by fragment shader to demonstrate triangles unit pictures.

⃗finalColor = ambient ∗ kA+ diffuse ∗ kD + specular ∗ kS (1)

For obviously observing the position of the dragon in the scene, BRDF
(Bidirectional Reflectance Distribution Function) is applied on the fragment
shader. Calculating ambient, specular, and diffuse light separately and finally
summing them up as the shader output, without using any parameter passed
by the vertex shader, the fragment shader can be done finely.

2.3 Screen Design

To create a cosmic background, we adopted the bounding box instead of
commonly-seen HDR. This assists us in utilizing some magnificent shaders in
ShaderFrog or other existing GLSL-type beauty. Detailedly, this is achieved
by a cubic geometry which enables inner face rendering. A star-filed shader is
imposed on it, which is purely mathematically designed and equation-formulated
for both nebula at the base and shining spots by noise generation. At the
center, we placed a moon-like or sun-like celestial body, which switches between
a flowing mysterious purple fluid and a halo sun. This is also achieved by
mathematical formulating rather than texture mapping. Additionally, hundreds
of interstellar dashes are simulated by a deformable sphere, which is achieved by
a varying vertex shader. They all have random positions, random orientations,
random sizes, and random colors, updated by every web refresh.

2.4 Animation

To animate the objects, we designed two types of motion, where the first is
for the camera and the second is for the dragon. We have considered a stereo
curve comprised of some sin and cos functions, along which each section of the
dragon body can move and orientate itself to be tangential to this curve. In

2

Figure 1: Scene with star-filed background, cosmic dust, and central star, and texture

general, it can give a sense of wavy soar, for such a creature living in mythology.
A graphic illustration is given in Fig.2.

Figure 2: Parameterized path for dragon motion

For the camera motion, it can be as complex as an orbit and VOF variation,
or simpler in our project as a circular motion. Such basic design, nonetheless,
can meet a problem in our case. Because the star field shader adopts surface UV
to generate noise, if the bounding box moves too fast relative to the camera, such
a noise would become true noise in the background, but not smoothly shining
spots without violent spatial movement. To tackle this issue, we designed to
also adjust the bonding box position and rotation so that it is always static to
the camera. This is also achieved by some math calculation, denoting pc as the
camera position, P0 as the point the camera is looking at, l as their distance,
and l0 as the reference distance. θy is rotation around y axis and θz is rotation
around z axis. The equations below describe all coding details.

p⃗ =
l − l0
l

p⃗c, θy = −tan−1(
|pc,z − p0,z|
|pc,x − p0,x|

), θy = −tan−1(
|pc,y − p0,y|
|pc,xz − p0,xz|

) (2)

3 Result

Given all above processes, we can ultimately achieve a 3D Chinese dragon
animation scene through three.js. Detailed demonstrations are provided in the
below link:

https://furkathertaha.github.io/posts/threeJS-sf/

3

https://furkathertaha.github.io/posts/threeJS-sf/

	Introduction
	Approach
	Model
	Texture
	Screen Design
	Animation

	Result

